1/4

The Cross Product

The cross product of two vectors, A and B, is denoted as $A \times B$.

The cross product of two vectors is **defined** as:

$$\mathbf{A} \times \mathbf{B} = \hat{a}_n |\mathbf{A}| |\mathbf{B}| \sin \theta_{AB}$$

Just as with the dot product, the angle θ_{AB} is the angle between the vectors A and B. The unit vector \hat{a}_n is **orthogonal** to both A and B (i.e., $\hat{a}_n \cdot \mathbf{A} = 0$ and $\hat{a}_n \cdot \mathbf{B} = 0$).

IMPORTANT NOTE: The cross product is an operation involving **two vectors**, and the result is also a **vector**. E.G.,:

$\mathbf{A} \times \mathbf{B} = \mathbf{C}$

$$\mathbf{A} \times \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \sin \theta_{AB}$$

Whereas the **direction** of vector $A \times B$ is described by unit vector \hat{a}_n .

