The Cross Product

The cross product of two vectors, A and B, is denoted as $A \times B$.

The cross product of two vectors is defined as:

$$
\mathbf{A} \times \mathbf{B}=\hat{a}_{n}|\mathbf{A}||\mathbf{B}| \sin \theta_{A B}
$$

Just as with the dot product, the angle $\theta_{A B}$ is the angle between the vectors A and B . The unit vector \hat{a}_{n} is orthogonal to both A and B (i.e., $\hat{a}_{n} \cdot \mathbf{A}=0$ and $\hat{a}_{n} \cdot \mathbf{B}=0$).

$$
0 \leq \theta_{A B} \leq \pi
$$

IMPORTANT NOTE: The cross product is an operation involving two vectors, and the result is also a vector. E.G.,:

$$
A \times B=C
$$

The magnitude of vector $A \times B$ is therefore:

$$
|\boldsymbol{A} \times \mathbf{B}|=|\boldsymbol{A}||\mathbf{B}| \sin \theta_{A B}
$$

Whereas the direction of vector $A \times B$ is described by unit vector \hat{a}_{n}.

Problem! \longrightarrow There are two unit vectors that satisfy the equations $\hat{a}_{n} \cdot \mathbf{A}=0$ and $\hat{a}_{n} \cdot \mathbf{B}=0$!! These two vectors are antiparallel.

$\boldsymbol{A} \cdot \hat{\boldsymbol{a}}_{n 1}=\boldsymbol{A} \cdot \hat{\boldsymbol{a}}_{n 2}=0$
$\mathbf{B} \cdot \hat{\boldsymbol{a}}_{n 1}=\mathbf{B} \cdot \hat{\boldsymbol{a}}_{n 2}=\mathbf{0}$

$$
\hat{\boldsymbol{a}}_{n 1}=-\hat{\boldsymbol{a}}_{n 2}
$$

Q: Which unit vector is correct?
A: Use the right-hand rule (See figure 2-9)!!

From: www.physics.udel.edu/~watson/phys345/ class/1-right-hand-rule.html

Some fun facts about the cross product!

1. If $\theta_{A B}=90^{\circ}$ (i.e., orthogonal), then:

$$
\begin{aligned}
\mathbf{A} \times \mathbf{B} & =\hat{a}_{n}|\mathbf{A}| \mathbf{B} \mid \sin 90^{\circ} \\
& =\hat{a}_{n}|\mathbf{A}| \boldsymbol{B} \mid
\end{aligned}
$$

2. If $\theta_{A B}=0^{\circ}$ (ie., parallel), then:

$$
\begin{aligned}
\mathbf{A} \times \mathbf{B} & =\hat{a}_{n}|\mathbf{A}| \boldsymbol{\mathbf { B }} \mid \sin 0^{\circ} \\
& =0
\end{aligned}
$$

Note that $\mathbf{A} \times \mathrm{B}=0$ also if $\theta_{A B}=180^{\circ}$
3. The cross product is not commutative! In other words, $\boldsymbol{A} \times \mathbf{B} \neq \boldsymbol{B} \times \boldsymbol{A}$. Instead:

$$
\begin{aligned}
& \text { I see! When } \\
& \text { evaluating the } \\
& \text { cross product of } \\
& \text { two vectors, the } \\
& \text { order is dog- } \\
& \text { gone important! } \\
& \mathbf{A} \times \mathbf{B}=-(\mathbf{B} \times \mathbf{A})
\end{aligned}
$$

4. The negative of the cross product is:

$$
-(A \times B)=-A \times B=A \times(-B)
$$

5. The cross product is also not associative:

$$
(A \times B) \times C \neq A \times(B \times C)
$$

Therefore, $\mathrm{A} \times \mathrm{B} \times \mathrm{C}$ has ambiguous meaning!
6. But, the cross product is distributive, in that:

$$
A \times(B+C)=(A \times B)+(A \times C)
$$

and also,

$$
(B+C) \times A=(B \times A)+(C \times A)
$$

